PREFEITURA MUNICIPAL DE POUSO ALEGRE

SISTEMA DE DRENAGEM

PROJETO BÁSICO - ESTUDOS DA TRAVESSIA DA RUA BENTO DÓRIA RAMOS – MELHORIAS E COMPLEMENTAÇÕES

MEMORIAL DESCRITIVO, PLANILHA DE ORÇAMENTO

VOLUME I

Elaborado por:

POUSO ALEGRE / MG

JULHO 2016

1	APRESENTAÇÃO	3
2	INFORMAÇÕES GERAIS	5
2	2.1 - Identificação do empreendedor	5
2	2.2 - Responsável pelo relatório	5
3	ASPECTOS REGIONAIS DE INTERESSE	7
4	MODELAGEM HIDROLÓGICA	12
5	ELEMENTOS DO SISTEMA DE DRENAGEM EXISTENTE	19
4.1	Análise Crítica da Situação no Local Estudado	22
6	ELEMENTOS DO SISTEMA DE DRENAGEM PROPOSTO	23
5.1	Estruturas Projetadas	31
7	DIMENSIONAMENTO HIDRÁULICO	32
8	CONCLUSÃO	33
a	PRO IETOS	34

A CONEPP CONSULTORIA LTDA., empresa com sede a Rua Américo Luz, nº 521 - salas 901/902/903/904 – Belo Horizonte/MG, inscrita no CPNJ sob o nº 10.525.827/0001-72, vêm apresentar a seguir o "PROJETO BÁSICO – TRAVESSIA DA RUA BENTO DÓRIA – POUSO ALEGRE/MG - MELHORIAS E COMPLEMENTAÇÕES", elaborado em conformidade com contrato firmado entre a Prefeitura Municipal de Pouso Alegre/MG e a CONEPP CONSULTORIA LTDA.

O presente trabalho é composto por Volumes único, sendo:

Volume Único – Composto por memorial descritivo, projetos e orçamento dos Estudos da Travessia da Rua Bento Dória, referente às melhorias e implantações no Sistema de Drenagem, inserido na zona urbana de Pouso Alegre/MG.

O referido estudo tomou como base as seguintes premissas técnicas e documentos básicos:

- Planta topográfica;
- Relatório de Resultados da ABTC Dispõe de Cálculo de Esforços e Dimensionamento de Galerias;
- Normas técnicas da ABNT
- ANA Agência Nacional de Águas. Dados hidrometeorológicos obtidos através do "Sistema de Informações Hidrológicas HidroWeb". (www.ana.gov.br)
- DNIT Departamento Nacional de Infraestrutura de Transportes. Manual de Hidrologia Básica para Etrutura de

CONEPP

Drenagem. Publicação IPR-715. Rio de Janeiro, 2005. (www.dnit.gov.br)

- DNIT Departamento Nacional de Infraestrutura de Transportes. Manual de Drenagem de Rodovias. Publicação IPR-724. Rio de Janeiro, 2006. (www.dnit.gov.br)
- SisCCoH Sistema para cálculo de componentes hidrálicos.
 Universidade Ferderal de Minas Gerais, Departamento de Engenharia Hidráulica e Recursos Hídricos.
- HEC-HMS 4.1 Hydrologic Modeling System (www.hec.usace.army.mil)
- Imagens do Google Earth.

2.1 - Identificação do empreendedor

RAZÃO SOCIAL:

PREFEITURA MUNICIPAL DE POUSO ALEGRE

ENDEREÇO PARA CORRESPONDÊNCIA:

PREFEITURA MUNICIPAL DE POUSO ALEGRE R. DOS CARIJÓS, 45 - CENTRO

CEP.: 37550-000

POUSO ALEGRE / MG

RESPONSÁVEIS:

SECRETÁRIO MUNICIPAL DE OBRAS E SERVIÇOS VIRGÍLIO RENNÓ

2.2 - Responsável pelo relatório

RAZÃO SOCIAL:

CONEPP CONSULTORIA LTDA.

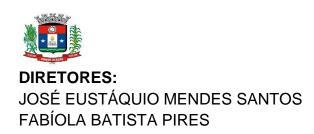
ENDEREÇO:

RUA AMÉRICO LUZ, Nº. 521.

BAIRRO: GUTIERREZ TELEFAX: (31) 2515-6797

CEP: 30.441-094

BELO HORIZONTE - MG


adm@conepp.com.br - www.conepp.com.br

CADASTRO NACIONAL DE PESSOA JURÍDICA

CNPJ: 10.525.827/0001-72

Sell

CONSULTORIA

Conforme acordado, pela prefeitura e a CONEPP, foi feito o detalhamento dos projetos apenas para a nova travessia, considerada como 1ª Etapa, com a finalidade de amenizar o problema das inundações na região da travessia da Rua Bento Dória Ramos. Uma vez que para solucionar o problema é necessária a construção de uma bacia de detenção, os estudos posteriores, simulações e previsões de demanda para implantação da mesma, deverão ser considerados em 2ª Etapa.

A alternativa estudada, foi a inclusão de uma bacia de detenção à montante da travessia da Rua Bento Dória Ramos, com volume aproximado de 50.200 m³ possuindo a mesma uma galeria de seção tripla de 1,00 x 1,50 para garantir a vazão perene, hoje existente, e na ocorrência da precipitação máxima de estudo, garantir uma vazão de 13,30 m³/s (em uma situação de chuva crítica) sendo essa vazão somada às bacias de contribuição vizinhas que resultam em uma vazão de 16,50 m³/s, o suficiente para a travessia projetada, minimizando os riscos de inundações da Rua Bento Dória e do Bairro Vale das Andorinhas.

As premissas básicas relativas aos dados de cálculo de vazão, foram tomadas com base em orientações da Prefeitura Municipal de Pouso Alegre/MG, visitas técnicas realizadas e simulações executadas no programa HEC-HMS 4.1. A partir da análise deste conjunto de informações, determinou-se a melhor solução para o problema apresentado, tendo em vista que neste local ocorrem constantes alagamentos, uma vez que está situado dentro dos limites da área de inundação, pertencente ao Ribeirão das Mortes.

Sell

S

CONEPP

3 ASPECTOS REGIONAIS DE INTERESSE

Hidrografia

A cidade de Pouso Alegre está localizada nas Margens do Rio Sapucaí Mirim e Rio Mandú. O Sapucaí Mirim tem uma bacia de 2287 km², e o Rio Mandú drena uma área de 497 km². O Rio Sapucaí Mirim, por sua vez conflui com o Rio Sapucaí, afluente do Rio Grande, em um ponto localizado um pouco a jusante da sede municipal. A Bacia do Rio Sapucaí tem uma área de drenagem total de 8824 km². Este conjunto de Rios integra o Comitê de Bacia Hidrográfica do Rio Sapucaí (GD5). O comitê GD5 integra 48 municípios. Na figura 01 tem-se uma visão geral da Bacia do Rio Sapucaí. A cidade de Pouso Alegre se posiciona dentro dos limites intermunicipais 36.

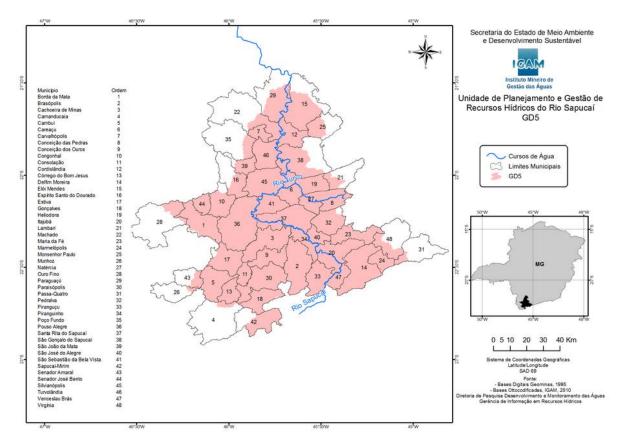


Figura 01 – Bacia do Rio Sapucaí. (FONTE: IGAM)

Nos estudos disponibilizados pelo Comitê de Bacias Hidrográficas do Rio Sapucaí, relaciona-se a região com a presença da Mata Atlântica. "... No sentido amplo do termo, a Floresta Atlântica engloba um diversificado mosaico de ecossistemas florestais com estruturas e composições florísticas bastante diferenciadas, acompanhando a diversidade dos solos, relevos e características climáticas da vasta região onde ocorre, tendo como elemento comum a exposição aos ventos úmidos que sopram do oceano (IBGE, 1992). Na Bacia do rio Sapucaí ocorre as seguintes formações: Floresta Ombrófila Densa, Floresta Ombrófila Mista, Floresta Estacional Semidecidual, Vegetação ciliar, Afloramentos rochosos e Campos de altitude.

Na bacia hidrográfica de contribuição dos Diques tem-se a prevalência de sítios urbanizados e sítios não urbanizados. Na área urbanizada predominam superfícies impermeabilizadas e nos sítios não urbanizados tem-se a predominância de pastagens. As formações de matas se estabelecem em manchas escassas ao longo de alguns talvegues e topos isolados, intercaladas por pastos.

Relevo

O relevo das bacias hidrográficas varia de ondulado a montanhoso com amplitudes altimétricas atingindo 200 m de desnível entre os topos mais elevados e fundos de vale. Ao mesmo tempo identifica-se a presença de vales muito planos ao longo dos Rios Sapucaí Mirim e Mandú, constituindo as planícies de inundação destes ambientes fluviais.

Clima

A climatologia local assume papel relevante no contexto das informações necessárias e disponíveis, constituindo a pluviometria a expressão mais relevante do clima para o trato da drenagem urbana. Assim, o estudo das precipitações e a determinação de modelos pluviométricos com estabelecimento

de correlações precipitação x probabilidade de ocorrência se inclui no foco dos estudos hidrológicos como subsídio ao dimensionamento das unidades constituintes do sistema de drenagem. Nimer (1989), assim descreve a climatologia:

"...A Região Sudeste Brasileira, onde se localiza a área em estudo, é caracterizada por uma notável diversificação climática, função da atuação simultânea de diversos fatores, alguns de ordem estática, outros de natureza dinâmica. Os fatores estáticos compreendem a posição e o relevo. A posição, com a totalidade de terrenos compreendidos entre os paralelos 14° e 25° sul, resulta que quase toda a superfície se estabeleça na zona tropical. Nessa posição, a região fica submetida a forte radiação solar, uma vez que a intensidade desse fenômeno depende essencialmente da altura do sol sobre o horizonte. A radiação solar, por sua vez, cria melhores condições para a evaporação, que será tanto mais ativa quanto maior o calor disponível.

Além dos aspectos latitudinais, conforme referido, a região Sudeste apresenta contrastes morfológicos significativos, onde são constantes as variações entre as superfícies elevadas, vales amplos e rebaixados e numerosas "serras". Esse caráter de sua topografia favorece as precipitações, uma vez que ela atua no sentido de aumentar a turbulência do ar pela ascendência orográfica, notadamente durante a passagem de correntes perturbadas.

Os fatores dinâmicos, por sua vez, influenciam as condições de tempo através da ação dos sistemas de circulação atmosférica. Durante todo o ano sopram ventos de Nordeste e Leste do Anticiclone Semifixo do Atlântico Sul, que representam tempo estável e ensolarado.

Essa situação é afetada somente pela chegada de correntes de circulação perturbada, responsáveis por instabilidade e bruscas mudanças de tempo, geralmente acompanhadas de chuvas. Na região Sudeste atuam, principalmente, os sistemas de correntes perturbadas do sul, oeste e leste..."

Reis, R. J. (2005) atualizou a classificação de Köpen em uma base cartográfica digitalizada (figura 02) resultando para a Região de Pouso Alegre um Clima do tipo Cwb, clima temperado frio onde a temperatura média do ar do mês mais quente é inferior a 22°C.

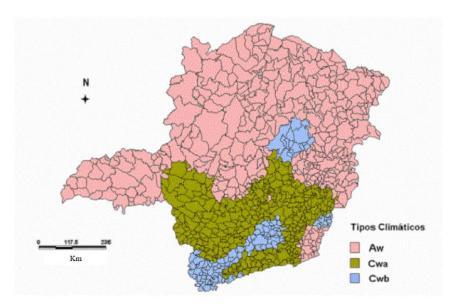


Figura 02 – Classificação de Köpen para o Estado de Minas Gerais

Fonte: Reis e Mata (2001) citados por Reis, R. J. (2005)

Conforme referido anteriormente o regime de chuvas do local é o fator climático de maior interesse para os aspectos da Drenagem Urbana. Para sua definição foram pesquisados os dados existentes na ANA – Agência Nacional de Águas, site Widroweb, tendo sido selecionada a estação de Ponte do Rodrigues (02245086). As características técnicas desta estação incluem os seguintes indicadores: Bacia do Rio Paraná (Bacia 6), sub-bacia do Rio Grande (Sub-bacia 61), Agência responsável ANA, operadora IGAM; com localização -22:23:9º de latitude e -45:53:5 de longitude. A série histórica desta estação compreende um período de observação entre 1967 e 2014 com uma precipitação total anual média de 1371,4 mm. Os dados de precipitação total mensal podem ser observados no Quadro 1. Na figura 02 estão representados os quantis mensais de precipitação e o número médio de dias de chuva.

SCH

Quadro 1 – Série histórica das precipitações mensais em Pouso Alegre (Estação: 02245086)

	ANO	JAN	FEV	MAR	ABR	MAIO	JUN	JUL	AGO	SET	OUT	NOV	DEZ	TOTAL (mm)
1	1967	х	х	х	Х	х	51,2	3,3	1,8	56,7	165,6	163,3	217,4	-
	1968	282,1	107,1	88,6	44,9	12,4	0	3,6	38,3	39	96,6	109,1	268,7	1090,4
	1969	208,9	149	138,5	113,7	54,9	14,5	0	65,8	10,5	135,8	259,3	184,1	1335,0
	1970	158,6	314,6	61,4	63,9	21	43,3	13,8	133,8	108,2	122,5	146,6	220,7	1408,4
	1971	197,9	92,8	176,8	94,1	91,1	100,1	8,7	0	36,9	58,2	66,1	152,9	1075,6
	1972	215	158,8	58,4	49,6	43,6	2,7	85,5	75,9	32,9	182,5	119,9	148,7	1173,5
	1973	239,4	158,3	92,6	136,3	43,5	12,5	41,6	9,1	48	120,7	93,3	313,6	1308,9
	1974	299,3	62,1	207,1	76,2	14,9	71,2	0	13,1	31	92,3	157,5	266	1290,7
	1975	189,5	211,9	49,4	52,4	45,7	0,7	15,2	0	31,9	117,5	231,9	283,9	1230,0
	1976	115,8	286,4	239,2	62,9	166	38,6	126,1	75,4	227,3	133,6	142,8	229,2	1843,3
	1977	337,5	35,2	160,5	119,5	0,1	41,4	2,4	21	128,3	98,3	217,7	253,2	1415,1
	1978	141,7	180,3	212,1	15,2	86,7	43,6	49,4	0,8	36,3	160,8	198,8	375	1500,7
	1979	164,3	191,4	181,2	37,6	80,5	0	46,1	48,6	113,6	137,3	285,6	230,9	1517,1
	1980	256,2	175,3	105,2	214,1	15,8	99,9	0	51,7	61,2	106,5	159,1	406,5	1651,5
	1981	348	87	123,6	61,6	11,6	92,2	16,9	18,9	52,5	230,2	295,1	328,3	1665,9
	1982	243,5	62,9	347,1	42,3	49,7	89,8	48,5	51,7	8,6	164,9	214,9	253,3	1577,2
	1983	350,3	268,1	224,3	132,8	155	165,3	52,3	5,5	285,8	195,4	139,3	408,3	2382,4
	1984	158,2	55,8	70,2	82,1	46,7	0	1,5	117,1	106,6	12	162,4	256,7	1069,3
	1985	311	198,5	214,1	41,8	38,8	11,5	0,7	25,1	80,1	122,5	148,7	390,2	1583,0
	1986	177,5	222,1	254,2	100,8	140,1	0,1	32,6	107,3	32,5	63,6	91,4	478,8	1701,0
	1987	258,2	124,6	155,6	111,1	163,9	60,8	10	4,5	139,3	65,5	182,9	117,8	1394,2
	1988	196,8	276,7	166,3	70,5	77,4	32,2	0,3	0	29,5	158,3	183,6	179,1	1370,7
	1989	405	313,4	142,4	75,3	18,4	18	54,4	24,8	88,5	51,2	115,2	275,3	1581,9
	1990	326,9	129,1	202,7	54	95,3	5,7	48,9	60,5	53,7	95,8	88,4	142,8	1303,8
	1991	347,5	200,8	365	95,6	33	4,2	16,2	1,9	45,1	161	63,4	184,4	1518,1
	1992	252,7	134,4	72,4	42,5	124,4	0	40,7	18,7	124,4	203,5	102,7	110,9	1227,3
	1993	192,1	226	148,3	48,4	71,9	37,9	15,5	30,1	154	146,8	111,6	200	1382,6
	1994	196,5	115,3	171,1	79,5	149,2	26,9	13,9	0	0	219,3	104,6	391,5	1467,8
	1995	157,4	449,8	180,8	43,4	57,8	12,5	29,3	4,7	13,4	335,5	141,8	173,4	1599,8
	1996	235	277,1	279,3	61,9	41,2	19,4	3,2	40,4	120,8	137,2	210,4	317	1742,9
	1997	262,2	102,5	101,8	74,3	44	115,3	13,4	10,2	77,6	148	170,7	243,6	1363,6
	1998	125,5	228,8	149	69,2	136,8	3	0	19,7	48,5	165,6	83,1	318,8	1348,0
	1999	344,1	222,5	138,9	23	20,9	53,2	0	0	49,5	30,1	99,1	193,9	1175,2
	2000	450,3	256,9	110,2	15,5	7,5	0	44,1	66,7	100,8	67,6	180,8	227	1527,4
	2001	107,4	146,7	86,9	25,6	58,4	7,1	10,8	30,3	90,9	177,6	198,9	217,4	1158,0
	2002	206,1	203,9	70,5	12,2	37,7	0	15,9	80,9	63,3	46,6	200,2	182,93	1120,2
	2003	297,8	88,7	154,1	34,6	44,8	6,4	10	X	7	124,7	77,1	214,2	-
	2004 2005	188,2	350,7	127,1	141	140,9	72	61,9 23,8	0	5,5	147,2	173,6	140,2 134,5	1548,3 1141,1
	2005	383,1 199,1	0 200,1	141,2 162,2	51,7 13,5	80,8 1	8,4 0	23,6 18,8	1,6 10	103 78,8	150,8 92,7	62,2 230,3	190,4	1141,1
	2007	372,1	71,2	74,7	62,3	39,3	12,1	108,8	0	0	164,7	165,8	184,5	1255,5
	2008	312,9	211,4	158,9	0	0	0	0	49,8	59	97,2	141,5	199,8	1230,5
	2009	200,3	238,9	124,64	97,6	72	57	56,7	71,5	134,7	119,7	85,7	242,4	1501,1
	2010	190,1	0	165,4	58,4	46,3	12,2	59,4	0	82,3	118,7	224,6	236,4	1193,8
	2011	330,16	100,7	160,3	82,2	1,4	26,5	Ó	0	11,5	112	157,2	0	982,0
	2012	308,8	109,2	86,9	145,3	74,3	92,7	40,7	4,6	24,8	90,3	117,2	0	1094,8
	2013	374,3	172,7	182,2	68,4	61,9	20,9	68,4	4,5	62,1	102,4	204,5	81,6	1403,9
	2014	66,1	17,8	74,3	34,4	Х	16,7	36,9	8,1	66,3	21,3	107,9	219,9	-
_							aracteríst							
	VI ínim a	66,10	0,00	49,40	0,00	0,00	0,00	0,00	0,00	0,00	12,00	62,20	0,00	Ptotal
	/láxima	450,30	449,80	365,00	214,10	166,00	165,30	126,10	133,80	285,80	335,50	295,10	478,80	(mm)
	Média	248,5	169,9	152,3	68,8	61,3	33,3	28,1	29,9	70,0	126,4	153,9	228,9	1.371,4

x Período Sem Observação

CONSUITORIA

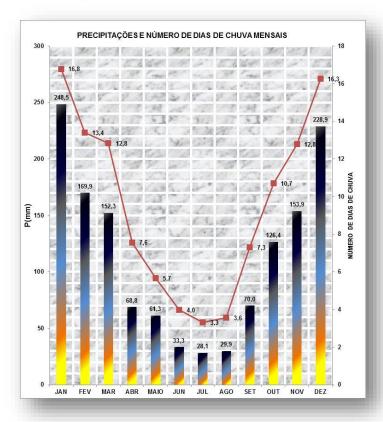


Figura 02 – Precipitações médias mensais e dias de chuva por mês para a Estação 02245086 – Pouso Alegre.

4 MODELAGEM HIDROLÓGICA

Precipitações

A análise das precipitações é essencial para a avaliação da resposta hidrológica das bacias urbanas. Neste processo normalmente são utilizadas metodologias indiretas de transformação de chuva em vazão; uma vez que muito raramente se dispõe de séries de medições hidrométricas em sítios urbanos que possibilitem a utilização de metodologias diretas baseadas na análise de séries históricas.

Assim a entrada fundamental para o modelo computacional são os dados de chuva. No caso foram utilizadas as precipitações diárias da estação 02245086, conforme indicado na tabela 1. Nesta tabela estão indicadas a

precipitação de 24 h a partir da chuva de 1 dia aplicando-se o fator de 1.14 (DAE-CETESB 1979). Estas precipitações foram submetidas a uma análise de frequência pelo método de Gumbel e os resultados estão indicados na tabela 3.

Tabela 01 – Disponibilidade de dados da estação hidrométrica

ANO HIDR			P24h(mm)
1967	1968	47,5	54,15
1968	1969	78,3	89,26
1969	1970	76,0	86,64
1970	1971	75,5	86,07
1971	1972	55,0	62,70
1972	1973	42,0	47,88
1973	1974	85,2	97,13
1974	1975	53,8	61,33
1975	1976	72,6	82,76
1976	1977	62,0	70,68
1977	1978	66,3	75,58
1978	1979	78,9	89,95
1979	1980	94,3	107,50
1980	1981	81,0	92,34
1981	1982	102,5	116,85
1982	1983	82,0	93,48
1983	1984	64,2	73,19
1984	1985	63,6	72,50
1985	1986	68,6	78,20
1986	1987	55,4	63,16
1987	1988	77,2	88,01
1988	1989	60,2	68,63
1989	1990	88,6	101,00
1990	1991	104,6	119,24
1991	1992	72,5	82,65
1992	1993	44,3	50,50
1993	1994	101,2	115,37
1994	1995	77,8	88,69
1995	1996	106,2	121,07
1996	1997	77,2	88,01
1997	1998	50,2	57,23
1998	1999	58,2	66,35
1999	2000	145,7	166,10
2000	2001	44,3	50,50
2001	2002	56,8	64,75
2002	2003	50,0	57,00
2003	2004	54,3	61,90
2004	2005	66,1	75,35
2005	2006	52,8	60,19
2006	2007	55,4	63,16
2007	2008	80,0	91,20
2008	2009	76,5	87,21
2009	2010	48,7	55,52
2010	2011	72,0	82,08
2011	2012	68,5	78,09
2012	2013	91,5	104,31
2013	2014	58,2	66,35

CONSUITORIA

Tabela 2 – Resultados da análise de frequência pelo método de Gumbel

Tr	2	5	10	25	50	100	500	1000	10000
P24 (mm)	77,3	97,63	111,1	128	140,6	153,1	182	194,5	235,7

A partição das chuvas totais de 24 horas em chuvas de duração menor foi estabelecida aplicando-se os fatores da Tabela 3 (Silveira 2000).

Tabela 3 - Fatores de desagregação da chuva de 24 horas

t(min,h)	Pt/P24
5min	0,1004
10min	0,177
15min	0,226
20min	0,263
25min	0,293
30min	0,318
1h	0,42
2h	0,539
4h	0,659
6h	0,72
12h	0,851
24h	1

O ajuste matemático de uma relação IDF aplicando-se uma análise de regressão facilita a determinação de chuvas de durações menores. Feito este ajuste foram estabelecidas equações do tipo:

$$I = a \frac{T^m}{(t+b)^n}$$

Onde:

I = intensidade de precipitação, em mm/h;

T= período de Retorno em anos;

t = duração da chuva em minutos/

a, b, n e m= Constantes do posto;

Sell

CONEPP

Os ajustes feitos com os coeficientes propostos por Silveira (2000) indicam para o fator b o valor de14 e n=0.7818 resultando:

 Relação IDF (Intensidade, duração, Frequência) para T≤100 anos e t≤24h.

$$I = 893,51 \frac{T^{0.1708}}{(t+14)^{0.7818}}$$

 Relação IDF (Intensidade, duração, Frequência) para T>100 anos e t≤24h.

$$I = 1251,12 \frac{T^{0.0929}}{(t+14)^{0.7818}}$$

Para o procedimento de transformação de chuva em vazão foi utilizado o modelo HEC-HMS (Versão 4.0 – 31 dez 2013). Esse é um modelo desenvolvido pelos US ARMY CORPS OF ENGINEERS e possibilita a modelagem Hidrológica utilizando-se a teoria do Hidrograma Unitário. Neste projeto foi utilizada metodologia proposta pelo SCS.

O termo unitário pode ser entendido como duração unitária embora muitas vezes seja associado com a altura unitária de precipitação efetiva. Embora inúmeros refinamentos tenham sido adicionados, os princípios básicos estabelecidos por Sherman continuam os mesmos, ou seja:

- A chuva efetiva tenha uma intensidade constante, dentro da duração efetiva;
- O excesso de chuva esteja uniformemente distribuído por toda a bacia;
- O tempo base, ou seja, a duração do escoamento superficial direto provocado pela precipitação, resultante de uma precipitação de mesma duração é constante;
- As ordenadas do hidrograma de um dado tempo base são diretamente proporcionais aos volumes totais escoados representados por cada

Sell

15

hidrograma;

 Para uma dada bacia, o hidrograma resultante de um determinado excesso de chuva, reflete as características dessa bacia.

No método do hidrograma, seguindo os princípios essenciais estabelecidos por Sherman em 1932 as vazões de pico dependem de grandezas relativas à intensidade, duração da chuva, estado de umidade da bacia e a impermeabilização da mesma estimada por um parâmetro, CN (curva numerada) O valor de CN, variando até um máximo de 100; tem correspondência com o tipo de solo, cobertura e o grau de desenvolvimento da bacia.

Além da determinação dos hidrogramas e vazões de pico de cada bacia o programa possibilita modelar a propagação dos hidrogramas nos trechos pelo método de Muskingun-Kunge.

Nas bacias de Detenção é possível determinar a laminação da vazão de entrada do hidrograma, com redução dos picos de vazão na saída, através do método de Puls modificado. Isso implica na solução da seguinte equação:

$$S_{(j+1)} - S_j = \frac{I_j + I_{j+1}}{2} \Delta t - \frac{Q_{j+Q_{j+1}}}{2} \Delta t$$

Sendo:

S = armazenamento, na bacia de detenção,

I = a vazão de entrada nos instantes j e j+1;

Q = a vazão de saída nos instantes j e j+1;

 $\Delta t = \text{intervalo de tempo.}$

A solução da equação acima possibilita o dimensionamento dos volumes das Bacias de Detenção, as vazões a serem bombeadas e determinação das cotas máximas de inundação.

Sell

CONSUITORIA

O tempo de concentração das bacias foi determinado pela expressão de Kirpich dado por:

$$t_c = 57 \left(\frac{L^3}{\Delta H}\right)^{0.385}$$

sendo:

t_c: tempo de concentração [min]

L: comprimento total da bacia, medido ao longo do talvegue principal até o divisor de águas [km]

 ΔH : diferença de nível entre o ponto mais a montante da bacia e seu exutório, em [m].

O tempo de concentração de Kirpich foi estabelecido para as bacias individuais concentradas em junções definidas nos pontos de convergência das vazões. A partir daí sua propagação é feita pelo método dinâmico. No modelo HMS a translação dos hidrogramas foi estabelecida pela aplicação do método Muskingun Kunge, oito pontos.

O desnível da bacia ΔH foi determinado através da declividade efetiva conforme a seguinte expressão:

$$S = \left(\frac{L}{\sum_{i=1}^{n} L_i / \sqrt{s}}\right)$$

onde:

Jell

CONSUITORIA

S = declividade efetiva;

s = declividade parcial;

L = comprimento do talvegue em m;

Li=comprimento de talvegue parcial

Períodos de Recorrência

Em linhas gerais, foram adotados os valores descritos na tabela abaixo, conforme Diretrizes Básicas do DNIT.

Tabela 4 – Tempo de Recorrência.

Espécie	Período de Recorrência (anos)
Drenagem Sub-superficial	1
Drenagem Superficial	5 a 10
Bueiro	10 a 25 e 50
Pontilhão	50
Ponte	100

Para o estudo citado foi utilizado o período de recorrência de 50 anos levando em consideração a alta vazão demandada juntamente com os prejuízos e transtorno que podem ocorrer devido a um sub-dimensionamento dos dispositivos.

CON

5 ELEMENTOS DO SISTEMA DE DRENAGEM EXISTENTE

Atualmente não existem sistemas eficazes de escoamento de águas pluviais e a passagem do Ribeirão das Mortes pela Rua Bento Dória no Bairro Santa Edwirges, ocorrendo constantes inundações em períodos chuvosos, dificultando os acessos da população aumentando o risco na área em questão, conforme se pode ver nas fotos a seguir.

CONEPP

Nas fotos acima é possível constatar que quando em períodos chuvosos, o volume de água não é comportado pelo sistema existente, dificultando a passagem de veículos e pedestres na via, ocorrendo também o carreamento pontual de material nos bordos da via.

Acima imagens da travessia existente sendo 3 condutores de concreto DN800 e 1 condutor de concreto DN1000.

Nas imagens acima, constata-se danos nas estruturas existentes.

Consultoria

4.1 Análise Crítica da Situação no Local Estudado

Tendo como o principal objeto deste estudo, as melhorias e implantação da Travessia da Rua Bento Dória, é importante salientar que não é possível resolver o problema, uma vez que as limitações geométricas restringem as possibilidades, e a urbanização está inserida na área de inundação do Ribeirão da Morte, porém os resultados do estudo permitem amenizar a situação atual. Nas condições encontradas em visita técnica ao local, foram listadas as principais características das locais e das estruturas pertencentes à área em estudo, conforme a seguir:

- Nível da rua muito próxima ao nível da água do ribeirão;
- Vazão da travessia insuficiente;
- Estruturas de concreto danificadas:
- Falta de passagem para pedestres;
- Falta de proteção para pedestres.

Para execução dos serviços serão necessárias algumas demolições mostradas nas imagens a seguir:

Demolição de alvenaria existente

Demolição de contenção em concreto

6 ELEMENTOS DO SISTEMA DE DRENAGEM PROPOSTO

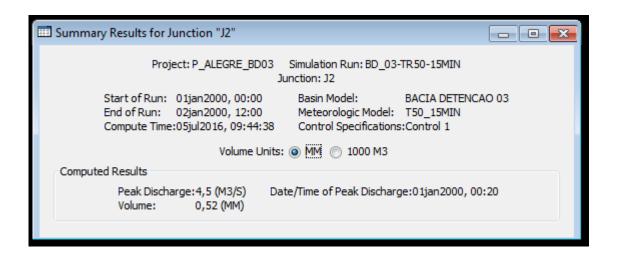
Devido à solicitação da Prefeitura Municipal de Pouso Alegre em elaborar um projeto para solucionar a situação de enchente da área em estudo e ao mesmo tempo possibilitar a aplicação de recursos de acordo com a disponibilidade econômica da autarquia, será descrita a seguir, alternativa operacional de implantação que atende tais necessidades.

Foi elaborado dois cenário, tomando-se como base os dados de precipitações, junto ao cadastro topográfico das estruturas e ou equipamentos existentes / projetados e inseridos no Software HEC-HMS 4.1, no qual, o mesmo possibilita uma análise criteriosa das variáveis hidrológicas.

Apresentamos a seguir os cenários que foram elaborados través do software Hec-Hms 4.1, possibilitando as seguintes análises:

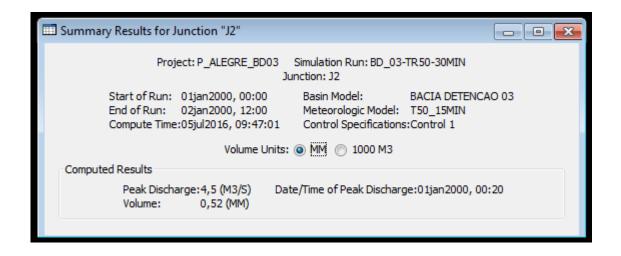
Sell

CONSUITORIA


CENÁRIO 01- TRAVESSIA PROJETADA NA RUA BENTO DÓRIA.

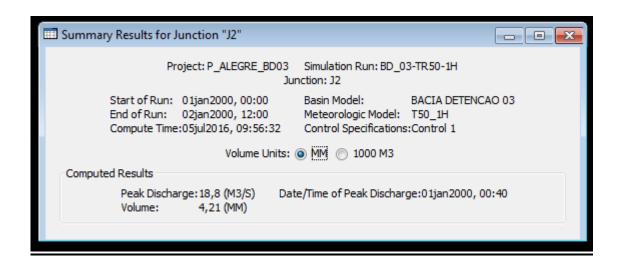
O Cenário-01 simula a situação existente no ponto em estudo, considerando todas as bacias de contribuição e interferências.

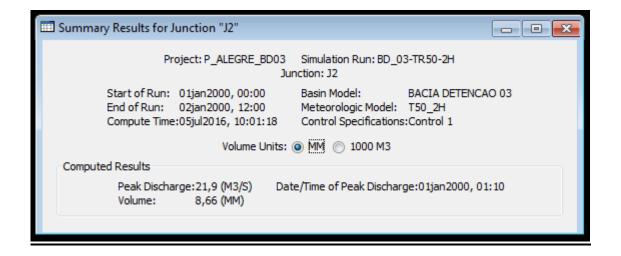
Segue abaixo as simulações hidráulicas do ponto em análise para obtenção do pico de descarga na travessia:


TR50-15min.

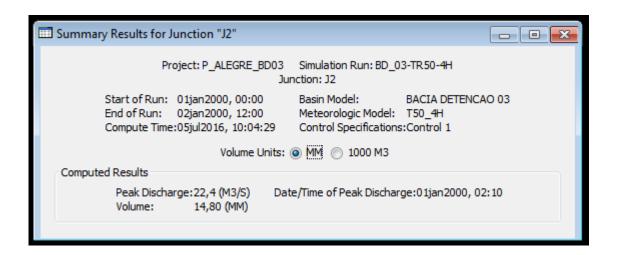
MONTANTE DA TRAVESSIA DA RUA BENTO DORIA.

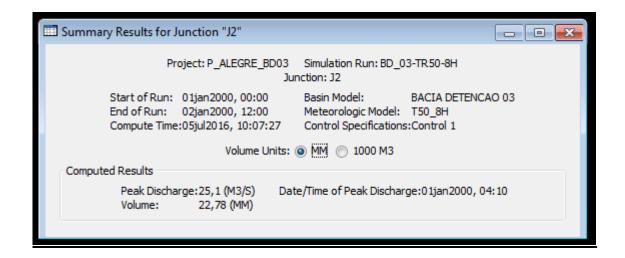
TR50-30min.


MONTANTE DA TRAVESSIA DA RUA BENTO DORIA.

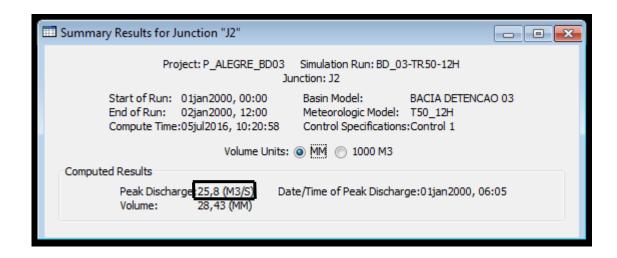


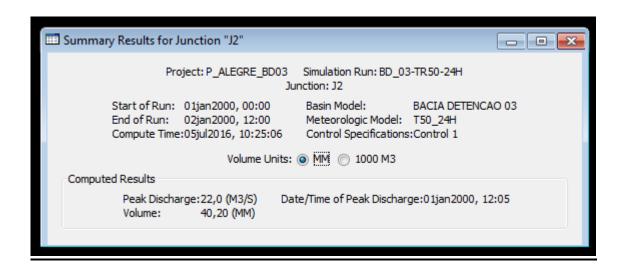
MONTANTE DA TRAVESSIA DA RUA BENTO DORIA.


TR50-2H. MONTANTE DA TRAVESSIA DA RUA BENTO DORIA.


Consultoria

MONTANTE DA TRAVESSIA DA RUA BENTO DORIA.


TR50-8H. MONTANTE DA TRAVESSIA DA RUA BENTO DORIA.



MONTANTE DA TRAVESSIA DA RUA BENTO DORIA.

TR50-24H.

MONTANTE DA TRAVESSIA DA RUA BENTO DORIA.

Com resultado dos estudos e apresentados nas figuras acima, podemos constar que a vazão máxima encontrada, para um tempo de retorno T=50anos, foi de 25,80 m³/s. Com base nesta vazão foi elaborado o dimensionamento hidráulico da travessia apresentado abaixo:

Simulação Sem Bacia de Re	etenção			
SisCCoH - Sistema para Cálculos de Componentes Hidráulicos				
Sec	ções Regulares			
Dad	Dados de Entrada			
Vazão (m³/s)	25,8			
Coeficiente de Manning	0,015			
Declividade (m/m)	0,02			
Largura (m)	4			
	Resultados			
Área molhada (m²)	3,71			
Coeficiente de Manning	0,015			
Declividade (m/m)	0,02			
Largura superficial (m)	4			
Número de Froude	2,306			
Profundidade do fluxo (m)	0,93			
Vazão (m³/s)	25,8			
Velocidade (m/s)	6,96			

CENÁRIO 02- COM BACIA DE AMORTECIMENTO A MONTANTE DA RUA BENTO DÓRIA.

Simulação considerando uma bacia de detenção (Etapa 02) localizada a montante da travessia projetada no Ribeirão da Morte, com capacidade de armazenamento de 50.200,00m³. A vazão de entrada calculada para esta bacia foi de 20,8m³/s. Como dispositivo de saída foi dimensionando um BTCC 1,50x1,00m, permitindo que após ocorrer o amortecimento da bacia seja descarregada uma vazão máxima de 13,30m³/s, com o objetivo de regular a vazão para que a travessia projetada à jusante possa trabalhar com capacidade mais adequada de condução.

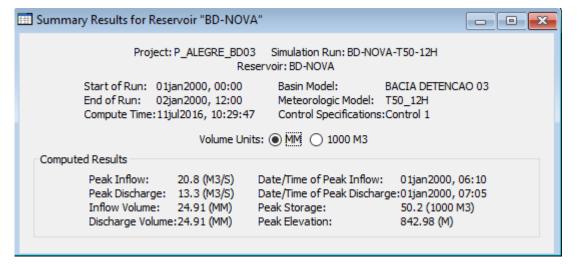
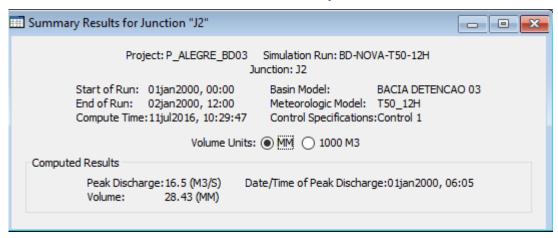


Imagem de localização da área de implantação da bacia de detenção proposta.


Resultados Bacia Detenção - T50 12H

Resultados Bento Doria com Bacia de Detenção - T50 12h

Com os resultados do estudo apresentado nas figuras acima, levando em consideração agora a bacia de amortecimento para a verificação hidráulica da travessia, podemos constar que a vazão máxima encontrada para um tempo de retorno T=50anos, foi de 16,50 m³/s. Com base nesta vazão foi elaborado o dimensionamento hidráulico apresentado abaixo:

Sell

CONEPP

Simulação Com Bacia de A	Amortecimento			
SisCCoH - Sistema para Cálculos de Componentes Hidráulicos				
	Seções Regulares			
	Dados de Entrada			
Vazão (m³/s)	16,5			
Coeficiente de Manning	0,015			
Declividade (m/m)	0,02			
Largura (m)	4			
	Resultados			
Área molhada (m²)	2,741			
Coeficiente de Manning	0,015			
Declividade (m/m)	0,02			
Largura superficial (m)	4			
Número de Froude	2,322			
Profundidade do fluxo (m)	0,69			
Vazão (m³/s)	16,5			
Velocidade (m/s)	6,02			

Verificamos que com a inclusão da bacia de detenção ocorreu uma diminuição considerável da vazão demandada para o ponto em estudo, sendo a mesma adequada para a galeria projetada.

5.1 Estruturas Projetadas

Diante do problema exposto, e após as análises do cenário, chegou-se à estrutura projetada, definida nos seguintes critérios apresentados a seguir:

 Para a travessia da Rua Bento Dória, foi considerada uma galeria de aduela dupla com seção de 2,00 m x 1,00 m. A definição da seção da galeria, foi estabelecida considerando-se os elementos restritivos da área, tais como soleira das casas e greide da Rua Bento Dória Ramos e a área da bacia de contribuição.

 A galeria receberá na sua base uma camada de 0,65 m de pedra com diâmetro maior ou igual a 0,5m, logo após uma camada de 0,15m de brita 02 envolvida em manta geotêxtil, e uma camada de 0,10 m de lastro de concreto, juntamente com os drenos de alívio, conforme especificado em projeto.

Os dados técnicos da galeria foram retirados do padrão sugerido pela ABTC – Associação Brasileira dos Fabricantes de Tubos de Concreto, que seguirá anexo a este memorial, e não isenta a empresa construtora da garantia dos trabalhos executivos;

7 DIMENSIONAMENTO HIDRÁULICO

As seções de vazão dos dispositivos de drenagem foram dimensionadas considerando-se o regime uniforme, aplicando-se a equação de Chèzy com coeficiente de Manning associada à equação da continuidade, resultando a seguinte expressão:

$$Q = \frac{S. (R_H)^{2/3}. (i)^{1/2}}{n}$$

onde:

Q = vazão, em m3/s;

S = área de seção hidráulica, em m2;

RH = raio hidráulico, em m;

i = declividade longitudinal, em m/m;

n = coeficiente de rugosidade da fórmula de Manning.

Os coeficientes de rugosidade da fórmula de Manning adotados foram:

Sell

CONSULTORIA

n = 0,015 para Galeria Celular de Concreto;

Equação da Continuidade:

Q = A. v

onde:

A = área molhada, m2 Q = vazão, m3/s

v = velocidade, m/s

8 CONCLUSÃO

Com a análise dos cenários apresentados, concluímos que as travessias existentes são insuficientes, e a projetada, quando analisada isoladamente, terá a função apenas de amenizar a situação no local, devido a impossibilidade da implantação de seção com maior capacidade de vazão. Contudo está sendo apresentado no Cenário-02 uma alternativa através da implantação uma bacia de detenção que proporcionará desempenho adequado às estruturas a jusante e a solução dos impactos das enchentes que são recorrentes no local.

Vale ressalta que o estudo contempla a bacia de contribuição até o ponto em estudo (Travessia Rua Bento Dória), caso ocorra falhas em dispositivos a jusante do ponto, como seção do canal inadequada e/ou Bueiro de travessia da BR-459, poderá ocorrer refluxo do sistema.

Sell

CONSULTATION

9 PROJETOS

ÍNDICE DE PLANTAS

PLANTA	DESCRIÇÃO
N ₀	
01	PLANTA E PERFIL
02	DETALHES CONSTRUTIVOS
03	DETALHE DA ARMAÇÃO DA GALERIA
04	BACIA DE CONTRIBUIÇÃO

sell

